# On the Definition and Normality of a General Table of Simultaneous Padé Approximants 

Bernhard Beckermann<br>Centre de Physique Théorique, CNRS, Luminy Case 907, F-13288 Marseille CEDEX 09, France and Laboratoire d'Analyse Numérique et d'Optimisation, UFR IEEA-M3, USTL, F-59655 Villeneuve d'Ascq CEDEX, France

## Jacek Gilewicz

Centre de Physique Théorique, CNRS, Luminy Case 907, F-13288 Marseille CEDEX 09, France and Université de Toulon, F-83130 La Garde, France

AND<br>Valeri Kaliaguine<br>Centre de Physique Théorique, CNRS, Luminy Case 907, F-13288 Marseille CEDEX 09, France and Nizhnii Novgorod State University, Department of Mathematics, Gagarina 23, 606300 Nizhnii Novgorod, Russia<br>Communicated by D. S. Lubinsky

Received July 30, 1992; accepted in revised form October 27, 1992


#### Abstract

We give a correct definition of a general table of simultaneous Padé approximants and study it's normality property. © 1994 Academic Press, Inc.


## 1. Definition of a General Table of Simultaneous Padé Approximants

Throughout this paper we will assume that $p$ is a positive integer, $z_{0}$ a complex number and that $f_{1}, \ldots, f_{p}$ are (formal) power series with respect to $z_{0}$

$$
f_{i}(z)=\sum_{n=0}^{\infty} a_{n}^{i}\left(z-z_{0}\right)^{n}
$$

The tuple ( $\mathbf{m}, \mathbf{n}$ ) will be called an index, if $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{p}\right)$, $\mathrm{n}=\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, with $m_{i}, n_{i}+1$ being non-negative integers $(i=1, \ldots, p)$.

We define a denominator $Q(z)$ and numerators $P_{1}(z), P_{2}(z), \ldots, P_{p}(z)$ of simultaneous approximants associated with index ( $\mathbf{m}, \mathbf{n}$ ) by the following relations: $m=m_{1}+m_{2}+\cdots+m_{p}(i=1,2, \ldots, p)$

$$
\begin{gather*}
\operatorname{deg} Q \leqslant m, \quad \operatorname{deg} P_{i} \leqslant n_{i},  \tag{1}\\
Q(z) f_{i}(z)-P_{i}(z)=c_{i}\left(z-z_{0}\right)^{m_{i}+n_{i}+1}+\cdots, \tag{2}
\end{gather*}
$$

Note that by definition it is sufficient to find a polynomial $Q$, $\operatorname{deg} Q \leqslant m$, with

$$
\begin{equation*}
\left(Q f_{i}\right)_{j}=0, \quad j=n_{i}+1, n_{i}+2, \ldots, n_{i}+m_{i}, \quad i=1,2, \ldots, p \tag{3}
\end{equation*}
$$

(we denote by $(g)_{j}$ the coefficient of $\left(z-z_{0}\right)^{j}$ in the power series of $g(z)$, especially $(g)_{j}=0$ for $\left.j<0\right)$. Then the polynomials $P_{i}(z)(i=1,2, \ldots, p)$ are given by $P_{i}(z)=0$ if $n_{i}=-1$, and otherwise by

$$
\begin{equation*}
P_{i}(z)=\sum_{k=0}^{n_{i}}\left(Q f_{i}\right)_{k}\left(z-z_{0}\right)^{k} . \tag{4}
\end{equation*}
$$

A non-trivial polynomial $Q(z)$ exists for all indices ( $\mathbf{m}, \mathrm{n}$ ) since (3) results in a system of $m$ linear homogeneous equations with $(m+1)$ unknown coefficients of $Q$.

For the case $n_{1}+m_{1}=n_{2}+m_{2}=\cdots=n_{p}+m_{p}$, the index ( $\mathbf{m}, \mathbf{n}$ ) will be called a Mahler index. Following the notations introduced in [11], the polynomials of simultaneous approximation $Q, P_{i}$ corresponding to Mahler indices are so-called Hermite-Padé polynomials of type II. In [9], Hermite also defined a second class of Hermite-Padé polynomials of type I (confer, e.g., [7, 1, 8, 2, 12]). Close connections between both types have been pointed out in $[11,10,4,5]$. In [6,13], further results for type II polynomials are given, the case of diagonal Mahler indices $m_{1}=m_{2}=\cdots=m_{p}, n_{1}=n_{2}=\cdots=n_{p}$, is discussed in [3].

It is well known that in general neither the polynomials $Q(z)$ and $P_{i}(z)$ nor the vector of rational functions

$$
\pi(\mathbf{m}, \mathbf{n})=\left(\frac{P_{1}}{Q}, \frac{P_{2}}{Q}, \ldots, \frac{P_{p}}{Q}\right)
$$

is unique for a fixed index ( $\mathbf{m}, \mathbf{n}$ ). In the present paper we shall study the general table of simultaneous approximants defined as follows.

Definition 1. For all indices ( $\mathbf{m}, \mathbf{n}$ ) we shall call simultaneous Padé denominator a non-trivial polynomial $Q(z)$ of smallest degree verifying (1)-(2). The corresponding vector of rational functions $\pi(\mathbf{m}, \mathbf{n})$ will be
called vector of simultaneous Padé approximants associated with index ( $\mathbf{m}, \mathbf{n}$ ).

In this way the approximants $\pi(\mathbf{m}, \mathbf{n})$ are unique for all $(\mathbf{m}, \mathbf{n})$. To see it we suppose that it exist two polynomials $Q(z)$ and $Q^{*}(z)$ of degree as small as possible satisfying (1)-(2). Then the difference $Q(z)-a Q^{*}(z)$ verifies (1)-(2), too. By choosing $a$ we can obtain ( $\left.Q-a Q^{*}\right) \leqslant \operatorname{deg} Q-1$ and so $Q$ is not of smallest degree verifying (1)-(2). Therefore $Q=a Q^{*}$ and $\pi(\mathbf{m}, \mathbf{n})=\pi^{*}(\mathbf{m}, \mathbf{n})$. In this paper, the $2 p$ dimensional table of the unique approximants $\pi(\mathbf{m}, \mathbf{n})$ will be called simultaneous Padé table.

As in the classical Pade case ( $p=1$ ), we will show the quite important role of the approximants corresponding to normal indices in this table defined as follows.

Definition 2. An index ( $\mathbf{m}, \mathbf{n}$ ) is called a normal index if for all polynomials verifying (1)-(2) we have $\operatorname{deg} Q=m$, $\operatorname{deg} P_{i}=n_{i}$, and $Q\left(z_{0}\right) \neq 0$ (where the degree of the zero polynomial is defined to be -1 ).

If an index ( $\mathbf{m}, \mathbf{n}$ ) is normal then obviously the vector $\pi(\mathbf{m}, \mathbf{n})$ is unique for all solutions of (1)-(2).

The conditions for a normal index ( $\mathbf{m}, \mathbf{n}$ ) are all necessary for the fact that the approximant $\pi(\mathbf{m}, \mathbf{n})$ does not occur at any other position in the simultaneous Padé table. As a sufficient condition, we have to assume in addition that all coefficients $c_{i}$ in (2) $(i=1,2, \ldots, p)$ are different from zero. This different type of regularity has been used in [6] to study Hermite-Padé polynomials of type II.

Let us consider for a moment a second system $\tilde{f}_{1}, \ldots, \tilde{f}_{p}$ of (formal) power series defined by $f_{i}(z)=\left(z-z_{0}\right)^{k_{i}} \cdot \tilde{f}_{i}(z)$ with $\tilde{f}_{i}\left(z_{0}\right) \neq 0 \quad(i=1, \ldots, p)$. It is easy to see that the simultaneous Pade table of both systems are closely connected, a fact which for $p>1$ does not hold anymore if one only considers Mahler indices. Given an index ( $\mathbf{m}, \mathbf{n}$ ) in the range $m_{i}+n_{i}<m+k_{i}$ for all $i=1, \ldots, p$, the polynomials $Q(z)=\left(z-z_{0}\right)^{m}, P_{i}(z)=0$, satisfy condition (1)-(2), hence the only normal index in this range is given by $\mathbf{m}=(0, \ldots, 0), \mathbf{n}=(-1, \ldots,-1)$. Similar, if $(\mathbf{m}, \mathbf{n})$ is a normal index with $n_{i}<k_{i}$ for an $i$, then necessarily $m_{i}=0$ and $n_{i}=-1$ which corresponds to the fact that we can consider the system of $p-1$ (formal) power series $f_{1}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{p}$.

## 2. Normal Indices

The usual way to study the approximants corresponding to normal indices is to introduce Hadamard determinants (see [7]). For $j, k, l \in N$
(the set of non-negative integers), $i=1, \ldots, p$, we denote by $A_{k}^{i}(j, l)$ the rectangular Toeplitz matrix of type $j \times k$

$$
A_{k}^{i}(j, l)=\left(\begin{array}{cccc}
a_{l}^{i} & a_{l-1}^{i} & \cdots & a_{l-k+1}^{i} \\
a_{l+1}^{i} & a_{l}^{i} & \cdots & a_{l-k+2}^{i} \\
\vdots & \ddots & \ddots & \vdots \\
a_{l+j-1}^{i} & a_{l+j-2}^{i} & \cdots & a_{l+j-k}^{i}
\end{array}\right)
$$

The system (3) of equations for the coefficients of the polynomial $Q(z)=$ $u_{0}+u_{1}\left(z-z_{0}\right)+\cdots+u_{m}\left(z-z_{0}\right)^{m}$ takes the following form:

$$
\left(\begin{array}{c}
A_{m+1}^{1}\left(m_{1}, n_{1}+1\right)  \tag{5}\\
\vdots \\
A_{m+1}^{p}\left(m_{p}, n_{p}+1\right)
\end{array}\right) \cdot\left(\begin{array}{c}
u_{0} \\
\vdots \\
u_{m}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right) .
$$

Introducing the determinants

$$
H(\mathbf{m}, \mathbf{n})=\left|\begin{array}{c}
A_{m}^{1}\left(m_{1}, n_{1}\right)  \tag{6}\\
\vdots \\
A_{m}^{p}\left(m_{p}, n_{p}\right)
\end{array}\right|, \quad Q(\mathbf{m}, \mathbf{n})=\left|\begin{array}{c}
A_{m+1}^{1}\left(m_{1}, n_{1}+1\right) \\
\vdots \\
A_{m+1}^{p}\left(m_{p}, n_{p}+1\right) \\
1\left(z-z_{0}\right) \cdots\left(z-z_{0}\right)^{m}
\end{array}\right|
$$

we obtain the following lemmata describing normal indices.
Lemma 1. Problem (3) has a unique solution (up to multiplication with a constant ) given by $Q=$ const $\cdot Q(\mathbf{m}, \mathbf{n})$ if and only if $Q(\mathbf{m}, \mathbf{n})$ is non-trivial.

Proof. The assertion follows immediately by application of the Kronecker-Capelli theorem on the system of linear Eqs. (5).

Setting $\mathbf{e}=(1,1, \ldots, 1), \mathbf{e}_{i}=(0,0, \ldots, 0,1,0, \ldots, 0)(i=1,2, \ldots, p)$, we obtain for the denominator $Q(\mathbf{m}, \mathbf{n})$ and its corresponding numerators $P_{i}(\mathbf{m}, \mathbf{n})$

$$
\begin{aligned}
Q(\mathbf{m}, \mathbf{n})\left(z_{0}\right)= & (-1)^{m} \cdot H(\mathbf{m}, \mathbf{n}) \\
(Q(\mathbf{m}, \mathbf{n}))_{m}= & H(\mathbf{m}, \mathbf{n}+\mathbf{e}), \\
\left(P_{i}(\mathbf{m}, \mathbf{n})\right)_{n_{i}}= & (-1)^{m_{i}+m_{i+1}+\cdots+m_{p}} \\
& \cdot H\left(\mathbf{m}+\mathbf{e}_{i}, \mathbf{n}+\mathbf{e}-\mathbf{e}_{i}\right) \quad\left(\text { if } n_{i} \geqslant 0\right), \\
\left(Q(\mathbf{m}, \mathbf{n}) \cdot f_{i}-P_{i}(\mathbf{m}, \mathbf{n})\right)_{m_{i}+n_{i}+1}= & (-1)^{m_{i+1}+\cdots+m_{p}} \\
& \cdot H\left(\mathbf{m}+\mathbf{e}_{i}, \mathbf{n}+\mathbf{e}\right) .
\end{aligned}
$$

This yields the following determinantal characterization for normal indices.

Lemma 2. For $m>0$, an index ( $\mathbf{m}, \mathrm{n}$ ) is normal in the general simultaneous Padé table if and only if

$$
\begin{equation*}
H(\mathbf{m}, \mathbf{n}) \neq 0, \quad H(\mathbf{m}, \mathbf{n}+\mathbf{e}) \neq 0, \quad \text { and } \quad H\left(\mathbf{m}+\mathbf{e}_{i}, \mathbf{n}+\mathbf{e}-\mathbf{e}_{i}\right) \neq 0 \tag{7}
\end{equation*}
$$

for all $i=1, \ldots, p$ with $n_{i} \geqslant 0$. If $m=0$, condition (7) has to be replaced by $a_{n_{i}}^{i} \neq 0$ for all $i=1, \ldots, p$ with $n_{i} \geqslant 0$.

Note that for the case of classical Padé approximation ( $p=1$ ), condition (7) reads as follows

$$
\begin{equation*}
H(m, n) \neq 0, \quad H(m, n+1) \neq 0, \quad H(m+1, n) \neq 0, \tag{8}
\end{equation*}
$$

which is the well-known characterization of the upper left corner of a square block in the corresponding $c$-table.

## 3. The Structure of the Simultaneous Pade Table

One of our main results deals with the structure of the simultaneous Padé table. The block structure of classical Padé approximants $(p=1)$ is well known. In the general case we propose the following.

Theorem 1. Each approximant in the simultaneous Padé table coincides with an approximant corresponding to a normal index.

The proof of this theorem is based on the following linear algebra lemmata.

Lemma 3. Let $M$ be a matrix of order $(\sigma+1) \times \sigma$. By $M\left[i_{1}, \ldots, i_{q}\right]$ we denote the submatrix obtained from $M$ by dropping the rows numbered $i_{i}, \ldots, i_{q}$. If rank $M=\sigma$ and if $i_{1}, \ldots, i_{q}$ are distinct numbers with rank $M\left[i_{v}\right]<\sigma, v=1,2, \ldots, q$, then rank $M\left[i_{1}, \ldots, i_{q}\right] \leqslant \sigma-q$.

Proof (of Lemma 3). Let $R_{i}$ denote the $i$ th row of the matrix $M$. By assumption, there exists an $i_{0}$ with rank $M\left[i_{0}\right]=\sigma$. Moreover, we have the following non-trivial dependencies for the rows of $M$

$$
\left\{\begin{array}{c}
c_{1,1} R_{1}+\cdots+c_{1, i_{1}-1} R_{i_{1}-1}+c_{1, i_{1}+1} R_{i_{1}+1}+\cdots+c_{1, \sigma+1} R_{\sigma+1}=0 \\
c_{2,1} R_{1}+\cdots+c_{2, i_{2}-1} R_{i_{2}-1}+c_{2, i_{2}+1} R_{i_{2}+1}+\cdots+c_{2, \sigma+1} R_{\sigma+1}=0 \\
\vdots \vdots \vdots \vdots \\
\vdots \\
c_{q, 1} R_{1}+\cdots+c_{q, i_{q}-1} R_{i_{q}-1}+c_{q, i_{q}+1} R_{i_{q}+1}+\cdots+c_{q, \sigma+1} R_{\sigma+1}=0
\end{array}\right.
$$

In addition, let $c_{v, i_{v}}=0$ for $v=1, \ldots, q$. Note that the vectors ( $c_{v, 1}, \ldots, c_{v, \sigma}$ ) ( $v=2, \ldots, q$ ) must be multiplies of the vector ( $c_{1,1}, \ldots, c_{1, \sigma}$ ), since otherwise by
a linear combination we would be able to construct a relation $c_{0,1} R_{1}+\cdots+$ $c_{0, i_{0}-1} R_{i_{0}-1}+c_{0, i_{0}+1}+\cdots+c_{0, \sigma+1} R_{\sigma+1}=0$ which contradicts the assumption rank $M\left[i_{0}\right]=\sigma$. Hence $c_{1, i_{p}}=0$ for $v=1, \ldots, q$ implying that the rows of the matrix $M\left[i_{1}, \ldots, i_{q}\right]$ are linearly dependent.

For the index $(\boldsymbol{l}, \mathbf{k}), \boldsymbol{l}=\left(l_{1}, l_{2}, \ldots, l_{p}\right), \mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{p}\right)$, and for $\sigma \in N$, let $A_{\sigma}(\boldsymbol{l}, \mathbf{k})$ denote the (rectangular) block Toeplitz matrix

$$
A_{\sigma}(l, \mathbf{k})=\left(\begin{array}{c}
A_{\sigma}^{1}\left(l_{1}, k_{1}\right) \\
\vdots \\
A_{\sigma}^{p}\left(l_{p}, k_{p}\right)
\end{array}\right)
$$

Lemma 4. Suppose that $(\boldsymbol{l}, \mathbf{k})$ is an index, $\sigma \in N$, with $\boldsymbol{l}=\left(l_{1}, l_{2}, \ldots, l_{p}\right)$ and $\sigma \leqslant l=l_{1}+l_{2}+\cdots+l_{p}$, such that

$$
\operatorname{rank} A_{\sigma+1}(l, \mathbf{k}+\mathbf{e})=\operatorname{rank} A_{\sigma}(\boldsymbol{l}, \mathbf{k}+\mathbf{e})=\sigma .
$$

Then we can find an $\mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{p}\right) \in N^{p}$, with $0 \leqslant r_{i} \leqslant l_{i}(i=1, \ldots, p)$ and $r_{1}+r_{2}+\cdots+r_{p}=\sigma$ such that $\operatorname{rank} A_{\sigma+1}(\mathbf{r}, \mathbf{k}+\mathbf{e})=\operatorname{rank} A_{\sigma}(\mathbf{r}, \mathbf{k}+\mathbf{e})=\sigma$.

Proof (of Lemma 4). We show the assertion by recurrence on $l=l_{1}+l_{2}+\cdots+l_{p}$ for fixed $\sigma$.

If $l=\sigma$, then Lemma 4 is trivial, take $\mathbf{r}=l$.
In the case $l>\sigma$, let without loss of generality $p^{\prime} \leqslant p$ with $l_{1}>0, \ldots$, $l_{p^{\prime}}>0, l_{p^{\prime}+1}=0, \ldots, l_{p}=0$ and let $i_{v}^{\prime}$ denote the number of the last row of the $v$ th (non-trivial) block of $A_{\sigma+1}(l, \mathbf{k}+\mathbf{e})\left(v=1, \ldots, p^{\prime}\right)$. For notational conveniences, let

$$
A=A_{\sigma}(l, \mathbf{k}+\mathbf{e}), \quad A^{\prime}=A_{\sigma}(l, \mathbf{k}) .
$$

Note that if there are rows numbered $j_{1}, \ldots, j_{\tau}(\tau \geqslant 1)$ with $\operatorname{rank} A\left[j_{1}, \ldots, j_{\tau}\right]=\sigma$ then also rank $A^{\prime}\left[j_{1}, \ldots, j_{\tau}\right]=\sigma$ since otherwise we would have $\operatorname{rank} A_{\sigma+1}(\boldsymbol{l}, \mathbf{k}+\mathbf{e})>\sigma$.

Suppose that there exists a $v$ with rank $A\left[i_{v}^{\prime}\right]=\sigma$. Then in view of

$$
\begin{aligned}
& A_{\sigma+1}(l, \mathbf{k}+\mathbf{e})\left[i_{v}^{\prime}\right] \\
& \quad=A_{\sigma+1}\left(l^{\prime}, \mathbf{k}+\mathbf{e}\right) \quad \text { with } \quad l^{\prime}=\left(l_{1}, \ldots, l_{v-1}, l_{v}-1, l_{v+1}, \ldots, l_{p}\right)
\end{aligned}
$$

the assertion of Lemma 4 follows by recurrence.
Let us discuss the case where $\operatorname{rank} A\left[i_{v}^{\prime}\right]<\sigma$ for all $v=1, \ldots, p^{\prime}$. By assumption, there exist $j_{1}>j_{2}>\ldots>j_{l-\sigma}$ with rank $A\left[j_{1}, j_{2}, \ldots, j_{l-\sigma}\right]=\sigma$. We may assume that $j_{1}$ is minimal, i.e., for all $j<j_{1}, j \neq j_{2}, \ldots, j_{l-\sigma}$, we have $\operatorname{rank} A\left[j, j_{2}, \ldots, j_{i-\sigma}\right]<\sigma$. Let $i_{v}$ be defined by

$$
\left\{i_{1}, \ldots, i_{q}\right\}=\left\{1,2, \ldots, j_{1}, i_{1}^{\prime}, \ldots, i_{p}^{\prime}\right\} \backslash\left\{j_{1}, j_{2}, \ldots, j_{1-\sigma}\right\}
$$

and hence $q \geqslant 1$. Consequently, $\operatorname{rank} A\left[i_{v}, j_{2}, \ldots, j_{l-\sigma}\right]<\sigma$ for all $v=1, \ldots, q$. From Lemma 3 we can conclude that $A\left[i_{1}, i_{2}, \ldots, i_{q}, j_{2}, \ldots, j_{I-\sigma}\right]$ is a matrix of size $(\sigma-q+1, \sigma)$ having a rank less or equal to $\sigma-q$. This contradicts the fact that, because of the block Toeplitz structure, $A\left[i_{1}, i_{2}, \ldots, i_{q}, j_{2}, \ldots, j_{I_{-\sigma}}\right]$ is a submatrix of the non-singular square matrix $A^{\prime}\left[j_{1}, j_{2}, \ldots, j_{1-\sigma}\right]$.

Now we are able to continue the proof of Theorem 1.
Proof (of Theorem 1). Let $Q(z)$ be a denominator of simultaneous Pade approximants associated with index ( $\mathbf{m}, \mathbf{n}$ ) normed such that

$$
\begin{equation*}
Q(z)=\left(z-z_{0}\right)^{y} \cdot Q^{\prime}(z) \quad \text { with } \quad Q^{\prime}\left(z_{0}\right)=1 \tag{9}
\end{equation*}
$$

with $\gamma \in N$ and let $P_{1}, \ldots, P_{p}$ denote the corresponding numerators. From (4) we can conclude that with $Q$ also $P_{i}$ is divisible by $\left(z-z_{0}\right)^{\gamma}$, let $P_{i}^{\prime}(z)=$ $P_{i}(z) /\left(z-z_{0}\right)^{\gamma}$. We define the indices $\left(\mathbf{m}^{\prime}, \mathbf{n}^{\prime}\right),(l, \mathbf{k})$ by $(i=1, \ldots, p)$

$$
\begin{array}{lll}
\mathbf{n}^{\prime}=\left(n_{1}^{\prime}, \ldots, n_{p}^{\prime}\right) & \text { with } & n_{i}^{\prime}=\operatorname{deg} P_{i} \geqslant-1, \\
\mathbf{m}^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{p}^{\prime}\right) & \text { with } & m_{i}^{\prime}= \begin{cases}\max \left\{\gamma-n_{i}-1, m_{i}\right\} \geqslant 0 & \text { if } \quad P_{i}=0, \\
m_{i} \geqslant 0 & \text { if } \quad P_{i} \neq 0,\end{cases} \tag{11}
\end{array}
$$

$$
\begin{array}{ll}
\boldsymbol{l}=\left(l_{1}, \ldots, l_{p}\right) & \text { with }  \tag{12}\\
l_{i}= \begin{cases}m_{i}^{\prime}+n_{i}-n_{i}^{\prime}-\gamma \geqslant 0 & \text { if } \quad P_{i}=0 \\
m_{i}^{\prime}+n_{i}-n_{i}^{\prime} \geqslant 0 & \text { if } \quad P_{i} \neq 0\end{cases} \\
\mathbf{k}=\left(k_{1}, \ldots, k_{p}\right) & \text { with } \\
k_{i}= \begin{cases}n_{i}^{\prime}=-1 & \text { if } \quad P_{i}=0 \\
n_{i}^{\prime}-\gamma=\operatorname{deg} P_{i}^{\prime} \geqslant 0 & \text { if } \quad P_{i} \neq 0\end{cases}
\end{array}
$$

such that $\boldsymbol{l}+\mathbf{k}=\mathbf{m}^{\prime}+\mathbf{n}-(\gamma, \ldots, \gamma)$. Finally, let $d:=\operatorname{deg} Q$. By definition, $Q$ is also a simultaneous Padé denominator associated with the indices ( $\mathbf{m}^{\prime}, \mathbf{n}$ ) and $\left(\mathbf{m}^{\prime}+\mathbf{n}-\mathbf{n}^{\prime}, \mathbf{n}^{\prime}\right.$ ). Moreover, $Q, P_{1}, \ldots, P_{p}$ is (up to multiplication with a constant) the unique solution of (1)-(2) with index ( $\mathbf{m}^{\prime}+\mathbf{n}-\mathbf{n}^{\prime}, \mathbf{n}^{\prime}$ ) where the degree of the denominator is less or equal to $d$. Setting $Q(z)=$ $u_{0}+u_{1} \cdot\left(z-z_{0}\right)+\cdots+u_{d} \cdot\left(z-z_{0}\right)^{d}\left(u_{0}=u_{1}=\cdots=u_{\gamma-1}=0\right)$, we see that the two systems of linear equations

$$
\begin{array}{r}
A_{d+1}\left(\mathbf{m}^{\prime}+\mathbf{n}^{\prime}-\mathbf{n}, \mathbf{n}^{\prime}+\mathbf{e}\right) \cdot\left(x_{0}, \ldots, x_{d}\right)^{T}=(0, \ldots, 0)^{T} \\
A_{d-\gamma+1}(l, \mathbf{k}+\mathbf{e}) \cdot\left(x_{\gamma}^{\prime}, \ldots, x_{d}^{\prime}\right)^{T}=(0, \ldots, 0)^{T} \tag{15}
\end{array}
$$

have (up to multiplication with a constant) the unique solutions ( $u_{0}, \ldots, u_{d}$ ), and ( $u_{\gamma}, \ldots, u_{d}$ ), respectively. Since $u_{d} \neq 0$, we may apply Lemma 4 in order to obtain a vector $\mathbf{r}=\left(r_{1}, \ldots, r_{p}\right), 0 \leqslant r_{i} \leqslant l_{i}, i=1, \ldots, p$, $r_{1}+\cdots+r_{p}=d-\gamma$, such that the determinant of the square submatrix $A_{d-\gamma}(\mathbf{r}, \mathbf{k}+\mathbf{e})$ of $A_{d-\gamma+1}(l, \mathbf{k}+\mathbf{e})$ does not vanish. Lemma 1 implies that
$Q^{\prime}, P_{1}^{\prime}, \ldots, P_{p}^{\prime}$ is (up to multiplication with a constant) the unique solution of (1)-(2) with index ( $\mathbf{r}, \mathbf{k}$ ). By construction we have $Q^{\prime}\left(z_{0}\right) \neq 0, \operatorname{deg} Q^{\prime}=$ $d-\gamma$ and $\operatorname{deg} P_{i}^{\prime}=k_{i}, i=1, \ldots, p$. Hence ( $\mathbf{r}, \mathbf{k}$ ) is a normal index with

$$
\pi(\mathbf{r}, \mathbf{k})=\pi(\mathbf{m}, \mathbf{n})=\left(\frac{P_{1}^{\prime}}{Q^{\prime}}, \ldots, \frac{P_{p}^{\prime}}{Q^{\prime}}\right)
$$

which yields the assertion of Theorem 1.
As a consequence of Theorem 1, each Hermite-Padé approximant of type II with minimal degree of denominator has a determinant representation. A similar result has been obtained in [1, p. 195] for type I approximants using a more general definition of minimal degree.

Example. Let as in [3, Example 2]

$$
f_{1}(z)=2 z^{6}+\frac{1+z}{1-z}, \quad f_{2}(z)=2 z^{6}+\frac{1+z}{1-2 z}, \quad z_{0}=0
$$

then we observe the following facts:
(a) A corresponding normal index is not unique, for instance for the approximant

$$
\begin{aligned}
\pi((4,4),(4,4))= & \left(\frac{z^{2}\left(3-4 z-4 z^{2}\right)}{z^{2}\left(3-10 z+10 z^{2}-6 z^{3}+6 z^{4}-6 z^{5}\right)}\right) \\
& \left.\frac{z^{2}\left(3-z-2 z^{2}\right)}{z^{2}\left(3-10 z+10 z^{2}-6 z^{3}+6 z^{4}-6 z^{5}\right.}\right)
\end{aligned}
$$

we find the normal indices $((4,1),(2,2))$, and $((1,4),(2,2))$.
(b) Note that the index of the approximant of (a) is a Mahler index, i.e., $n_{1}+m_{1}=n_{2}+m_{2}=\cdots=n_{p}+m_{p}$. In contrast, this condition does not hold for any of the corresponding normal indices.
(c) In general we will not have a block structure in form of generalized squares or rectangulars, since for example

$$
\begin{aligned}
\pi((4,4),(4,4)) & =\pi((4,1),(2,2))=\pi((1,4),(2,2)) \neq \pi((2,2),(2,2)) \\
& =\pi((3,2),(2,2))=\pi((2,3),(2,2))=\pi((2,2),(4,4)) \\
& =\left(\frac{(1+z)(1-2 z)}{(1-z)(1-2 z)}, \frac{(1+z)(1-z)}{(1-z)(1-2 z)}\right) .
\end{aligned}
$$

Remark. We do not know exactly a geometric form of "blocks" in our $2 p$ dimensional simultaneous Padé table. Some simple examples show that
their shape might be quite complicated, it depends on specific properties of the functions $f_{1}(z), f_{2}(z), \ldots, f_{p}(z)$ (for the special case of diagonal Mahler indices, a block structure was investigated in [3]). In contrast, the structure of a table of Hermite-Padé type I approximants was given in [2].

## References

1. B. Beckermann, "Zur Interpolation mit polynomialen Linearkombinationen beliebiger Funktionen," Thesis, Univ. Hannover, 1990.
2. B. Beckermann, The structure of the singular solution table of the $M$-Pade approximation problem, J. Comput. Appl. Math. 32, Nos. 1-2 (1990). 3-15.
3. B. Beckermann and G. Labahn, A uniform approach for Hermite Padé and simultaneous Padé Approximants and their Matrix-type generalizations, Numerical Algorithms 3 (1992), 45-54.
4. J. Coates, On the algebraic approximation of functions, I-III, Indag. Math. 28 (1966), 421-461.
5. J. Coates, On the algebraic approximation of functions, IV, Indag. Math. 29 (1967), 205-215.
6. M. G. de Bruin, Some aspects of simultaneous rational approximation, in "Numerical Analysis and Mathematical Modelling," Banach Center Publications, Vol. 24 (PWNPolish Scientific Publishers, Warsaw, 1990), pp. 51-84.
7. J. D. Dora and C. D. Crescendo, Approximants de Padé-Hermite, Numer. Math. 43 (1984), 23-39.
8. A. Draux and A. Maanaoui, Vector orthogonal polynomials, J. Comput. Appl. Math. 32 (1990), 59-68.
9. C. Hermite, Sur la Généralisation des Fractions Continues algébriques, in "Oeuvres," Vol. 4, pp. 357-377, Gauthier-Villars, Paris, 1917.
10. H. Jager, A multidimensional generalization of the Pade table, Indag. Math. 26 (1964), 193-249.
11. K. Mahler, Perfect systems, Compositio Math. 19 (1968), 95-166.
12. M. Van Barel and A. Bultheel, The computation of non-perfect Padé-Hermite approximants, Numerical Algorithms 1 (1991), 285-304.
13. J. Van Iseghem, Vector Padé approximants, in "Numerical Mathematics and Applications" (R. Vichnevetsky and J. Vignes, Eds.), pp. 73-77, North-Holland, Amsterdam, 1986.
