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We give a correct definition of a general table of simultaneous Pade
approxirnants and study it's normality property. © 1994 Academic Press, Inc.

1. DEFINITION OF A GENERAL TABLE OF

SIMULTANEOUS PADE ApPROXIMANTS

Throughout this paper we will assume that p is a positive integer, Zo a
complex number and that II' ...,Ip are (formal) power series with respect
to Zo

n=O

The tuple (m,o) will be called an index, if m=(m l ,m2 , ...,mp ),

0= (n I , n2 , ... , np ), with m i , n i + 1 being non-negative integers (i= 1, ..., p).
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We define a denominator Q(z) and numerators Pj(z), P2(z), ..., Pp(z) of
simultaneous approximants associated with index (m, n) by the following
relations: m=m l +m2 + .,. +mp (i= I, 2, ..., p)

deg Q ~ m, deg Pi ~ ni ,

Q(Z)/;(Z)-Pi(Z)=Ci(Z-ZO)mi+ni+1 + "',
(1)

(2)

Note that by definition it is sufficient to find a polynomial Q, deg Q~ m,
with

(Qfi)j = 0, j=ni + I, ni+2, ..., ni+mi, i= 1, 2, ..., p (3)

(we denote by (g)j the coefficient of (z - zo)j in the power series of g(z),
especially (g)j = 0 for j < 0). Then the polynomials Pi(z) (i = 1, 2, ... , p) are
given by Pi(z)=O if ni = -1, and otherwise by

n,

Pi(z) = L (Qfi h (z - ZO)k.
k~O

(4)

A non-trivial polynomial Q(z) exists for all indices (m, n) since (3) results
in a system of m linear homogeneous equations with (m + 1) unknown
coefficients of Q.

For the case n l + m l = n2 +m 2 = ... = np + mp , the index (m, n) will be
called a Mahler index. Following the notations introduced in [11], the
polynomials of simultaneous approximation Q, Pi corresponding to
Mahler indices are so-called Hermite-Pade polynomials of type II. In [9],
Hermite also defined a second class of Hermite-Pade polynomials of type I
(confer, e.g., [7,1,8,2,12]). Close connections between both types
have been pointed out in [11, to, 4,5]. In [6,13], further results for
type II polynomials are given, the case of diagonal Mahler indices
m1 = m 2 = ... = mp , nl = n2 = ... = np , is discussed in [3].

It is well known that in general neither the polynomials Q(z) and Pi(z)
nor the vector of rational functions

(
PI P2 Pp )

n(m,n)= Q'Q""'Q

is unique for a fixed index (m, n). In the present paper we shall study the
general table of simultaneous approximants defined as follows.

DEFINITION 1. For all indices (m, n) we shall call simultaneous Pade
denominator a non-trivial polynomial Q(z) of smallest degree verifying
(1H 2). The corresponding vector of rational functions n(m, n) will be
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called vector of simultaneous Pade approximants associated with index
(m,o).

In this way the approximants n(m, 0) are unique for all (m, 0). To see it
we suppose that it exist two polynomials Q(z) and Q*(z) of degree as small
as possible satisfying (l )-(2). Then the difference Q(z) - aQ*(z) verifies
(l )-(2), too. By choosing a we can obtain (Q - aQ*) ~ deg Q - 1 and so Q
is not of smallest degree verifying (l )-(2). Therefore Q = aQ* and
n(m, 0) = n*(m, 0). In this paper, the 2p dimensional table of the unique
approximants n(m, 0) will be called simultaneous Pade table.

As in the classical Pade case (p = 1), we will show the quite important
role of the approximants corresponding to normal indices in this table
defined as follows.

DEFINITION 2. An index (m, 0) is called a normal index if for all poly
nomials verifying (l )-(2) we have deg Q = m, deg Pi = n j , and Q(zo) # 0
(where the degree of the zero polynomial is defined to be - 1).

If an index (m, 0) is normal then obviously the vector n(m, 0) is unique
for all solutions of (l)-(2).

The conditions for a normal index (m, 0) are all necessary for the fact
that the approximant n(m, 0) does not occur at any other position in the
simultaneous Pade table. As a sufficient condition, we have to assume in
addition that all coefficients Ci in (2) (i= 1, 2, ..., p) are different from
zero. This different type of regularity has been used in [6] to study
Hermite-Pade polynomials of type II.

Let us consider for a moment a second system Z, ...,]p of (formal) power
series defined by !i(Z) = (Z-zo)k,.];(Z) with];(zo)#O (i=I, ...,p). It is
easy to see that the simultaneous Pade table of both systems are closely
connected, a fact which for p> 1 does not hold anymore if one only con
siders Mahler indices. Given an index (m, 0) in the range m j + n; < m + k i

for all i= 1, ..., p, the polynomials Q(z)=(z-zo)m, Pi(z)=O, satisfy condi
tion (1)-( 2), hence the only normal index in this range is given by
m = (0, ..., 0), 0 = (-1, ..., -1). Similar, if (m,o) is a normal index with
n j < k j for an i, then necessarily m; = 0 and ni = -1 which corresponds to
the fact that we can consider the system of p-l (formal) power series
II' ..., /; - l' I; + 1> ••• , I p .

2. NORMAL INDICES

The usual way to study the approximants corresponding to normal
indices is to introduce Hadamard determinants (see [7]). For j, k, lEN
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(the set of non-negative integers), i= 1, ..., p, we denote by A~(j, l) the
rectangular Toeplitz matrix of type j x k

(

ai
1

a i

A~(j, l)= i 1+1

a l + j _ 1

a:_ k
+ I)

a t - k + 2. .
ia t + j _ k

The system (3) of equations for the coefficients of the polynomial Q(z) =
UO+UI(Z-ZO)+ ... +um(z-zo)m takes the following form:

Introducing the determinants

(5)

mm, n)= Q(m, n) =
A~+ I(mp , np + 1)

I (z - zo) ... (z - zo)m

(6)

we obtain the following lemmata describing normal indices.

LEMMA 1. Problem (3) has a unique solution (up to multiplication with a
constant) given by Q = const· Q(m, n) if and only if Q(m, n) is non-trivial.

Proof The assertion follows immediately by application of the
Kronecker-Capelli theorem on the system of linear Eqs. (5). I

Setting e = (1, 1, ..., 1), ei = (0, 0, ..., 0, 1,0, ..., 0) (i = 1, 2, ..., p), we obtain
for the denominator Q(m, n) and its corresponding numerators Pi(m, n)

Q(m, n)(zo) = ( _1)m . H(m, n),

(Q(m, n»m = H(m, n + e),

(P;(m, n»"i = (-1 )mi +m'+ 1 + ... +mp

·H(m+e;, n+e-e i )

(Q(m, 0)· /;- P,.(m, n))mi+ni+ 1 = (-1 )mi + 1 + ... +mp

.H(m + ei , n + e).

(if ni~ 0),

This yields the following determinantal characterization for normal indices.
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LEMMA 2. For m > 0, an index (m, n) is normal in the general
simultaneous Pade table if and only if

H(m,n)#O, H(m,n+e)#O, and H(m+ej,n+e-ej)#O (7)

for all i = 1, ..., p with n j ~ O. If m = 0, condition (7) has to be replaced by
a~i#Ofor all i= 1, ..., p with ni~O.

Note that for the case of classical Pade approximation (p = 1), condi
tion (7) reads as follows

H(m,n)#O, H(m, n + 1) #0, H(m + 1, n) #0, (8)

which is the well-known characterization of the upper left corner of a
square block in the corresponding c-table.

3. THE STRUCTURE OF THE SIMULTANEOUS PADE TABLE

One of our main results deals with the structure of the simultaneous
Pade table. The block structure of classical Pade approximants (p = 1) is
well known. In the general case we propose the following.

THEOREM 1. Each approximant in the simultaneous Pade table coincides
with an approximant corresponding to a normal index.

The proof of this theorem is based on the following linear algebra
lemmata.

LEMMA 3. Let M be a matrix of order «(J + 1) x (J. By M[i I' ... , iqJ we
denote the submatrix obtained from M by dropping the rows numbered
i;, ..., iq. If rank M = (J and if ii, ..., iq are distinct numbers with
rank M[i.] < (J, v = 1, 2, ... , q, then rank M[i

"
..., iqJ ~ (J - q.

Proof (of Lemma 3). Let R j denote the ith row of the matrix M. By
assumption, there exists an io with rank M[ioJ = (J. Moreover, we have the
following non-trivial dependencies for the rows of M

{

CI,1 R, + ::: + CI,jt- 1 R'I_ 1+ Cl,il + I R jl + 1+ ::: + cI,a + IRa + I: 0
C2. I R I + +C2,12-IR'2-1 +C2,I2+1Ri2+1 + +C2,a+IRa + 1 °. .. . .. .. . . . . . .. ... . . .
Cq,I R l+'" +Cq,jq_1Riq_1+Cq,jq+IRiq + 1 + ... +Cq,a+1 R a+I=0

In addition, let Cv, i, = 0 for v = 1, ... , q. Note that the vectors (c v.I' ... , Cv.a)
(v = 2, ..., q) must be multiplies ofthe vector (c 1,1' ... , C I,a)' since otherwise by
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a linear combination we would be able to construct a relation co, I R , + ." +
CO,i{j _ I R io - 1+ CO,io+ I + ... + co,,, +, R" + 1=°which contradicts the assump
tion rank M[io] = a. Hence cu , =°for v= 1, ... , q implying that the rows
of the matrix M[i l , ... , iq ] are linearly dependent. I

For the index (l, k), 1= (I" 12 , ... , Ip ), k = (k" k 2 , ... , k p ), and for a E N, let
A,,(l, k) denote the (rectangular) block Toeplitz matrix

LEMMA 4. Suppose that (l,k) is an index, aEN, with 1=(I,,/2, ... ,lp )

and a ~ I = II + 12+ .. , + Ip , such that

rank Au+ ,(l, k + e) = rank A,,(l, k + e) = a.

Then we can find an r = (r, , r2, ... , rp) E NP, with °~ r i ~ Ii (i = 1, ... , p) and
r l + r2 + ... + rp = a such that rank Au+ ,(r, k + e) = rank AAr, k + e) = a.

Proof (of Lemma 4). We show the assertion by recurrence on
1=/1 +12 + ... +Ip for fixed a,

U I = a, then Lemma 4 is trivial, take r = I.
In the case I> a, let without loss of generality p' ~ p with II > 0, ...,

Ip ' > 0, Ip ' +, = 0, ..., Ip = 0 and let i;, denote the number of the last row of the
vth (non-trivial) block of Au+l(l,k+e) (v=l, ...,p'). For notational
conveniences, let

A=A,,(l,k+e), A' = AAI, k).

Note that if there are rows numbered i" ... ,ir (r~ 1) with
rank A [Jb ..., ir] = a then also rank ATil' ..., ir] = a since otherwise we
would have rank A,,+ ,(l, k + e) > a.

Suppose that there exists a v with rank A [i;,] = a. Then in view of

Au+,(/, k+e)[i;,]

= Au+ I(/" k + e)

the assertion of Lemma 4 follows by recurrence.
Let us discuss the case where rank A [i~] < a for all v= 1, ..., p'. By

assumption, there existil > i2 > .. , > i,-" with rank A [JI' i2' ..., i,- ,,] = a.
We may assume thati, is minimal, i.e., for alli <il ,i¥- i2' ..., i,-", we have
rank A [J, i2' ..., i,- a] < a. Let i" be defined by
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and hence q~1. Consequently, rankA[iv,J2, ...,JI_".]<0- for all
v= 1, ... , q. From Lemma 3 we can conclude that A[i., i 2 , ... , i q , J2' ... , JI-".]
is a matrix of size (o--q+ 1, 0-) having a rank less or equal to o--q.
This contradicts the fact that, because of the block Toeplitz structure,
A[i], i 2 , , i q ,J2' ... ,JI-".] is a submatrix of the non-singular square matrix
A'[j., j2, , JI--".].

Now we are able to continue the proof of Theorem 1.

Proof (of Theorem 1). Let Q(z) be a denominator of simultaneous
Pade approximants associated with index (m, 0) normed such that

Q(z) = (z - zoF· Q'(z) with Q'(zo) = 1 (9)

with yEN and let p], ..., Pp denote the corresponding numerators. From
(4) we can conclude that with Q also Pi is divisible by (z - zoF, let P;(z) =
P;(z )/(z - zoF. We define the indices (m', 0'), (I, k) by (i = 1, ..., p)

0' = (n~, ..., n~) with n; =deg Pj~ -1, (10)

with m~ = {max{y - n;-I, m j } ~ 0 if P;=O,
m' = (m~, ..., m~)

J m;~O if Pjo/:O,

(11 )

1= (II' ..., lp) with
{m~+n-n~-y~o if P;=O,

(12){. = I I I

I m;+nj-n;~O if P;o/:O,

r~= -1 if Pj=O,
k = (kl> ..., kp) with k j = : , (13 )

ni-y=degPj~O if P; 0/: 0,

such that 1+ k = m/ + 0 - (y, ..., y). Finally, let d:= deg Q. By definition, Q
is also a simultaneous Pade denominator associated with the indices (m/, 0)
and (m/ + 0 - 0',0'). Moreover, Q, PI' ..., Pp is (up to multiplication with
a constant) the unique solution of (1)-(2) with index (m'+o-o',o')
where the degree of the denominator is less or equal to d. Setting Q(z) =
Uo + U I • (z - zo) + ... + Ud' (z - ZO)d (uo= U I = ... = Uy_1 = 0), we see that
the two systems of linear equations

Ad+l(m/+o'-o,n'+e)·(xO, ,Xd)T=(O, ,O)T (14)

Ad_y+ 1(/, k +e)· (x~, , x~ f = (0, , Of (15)

have (up to multiplication with a constant) the unique solutions
(Uo, ... , Ud), and (uy, ..., ud), respectively. Since Ud 0/: 0, we may apply
Lemma 4 in order to obtain a vector r = (r l , ..., r p ), 0 ~ r j ~ Ij , i = 1, ..., p,
r I + ... + r p = d - "I, such that the determinant of the square submatrix
Ad_y(r,k+e) of Ad_y+I(/,k+e) does not vanish. Lemma 1 implies that
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Q', P;, ... , P~ is (up to multiplication with a constant) the unique solution
of (1 }-(2) with index (r, k). By construction we have Q'(zo)"# 0, deg Q' =

d - y and deg P; =k i , i = 1, ..., p. Hence (r, k) is a normal index with

(PI P')
n(r, k) = n(m, n) = Q~' ..., i

which yields the assertion of Theorem 1. I
As a consequence of Theorem I, each Hermite-Pade approximant of

type II with minimal degree of denominator has a determinant representa
tion. A similar result has been obtained in [I, p. 195] for type I
approximants using a more general definition of minimal degree.

EXAMPLE. Let as in [3, Example 2]

6 1+ z
fl(Z)=2z +-1-,

-z
zo=O,

then we observe the following facts:

(a) A corresponding normal index is not unique, for instance for the
approximant

we find the normal indices «4, I), (2, 2)), and « I, 4), (2, 2)).

(b) Note that the index of the approximant of (a) is a Mahler index,
i.e., n 1 + m, = n2+ m2 = ... = np + m p ' In contrast, this condition does not
hold for any of the corresponding normal indices.

(c) In general we will not have a block structure in form of
generalized squares or rectangulars, since for example

n«4, 4), (4,4)) = n«4, 1), (2,2)) = n«(1, 4), (2, 2))"# n«2, 2), (2,2))

= n«3, 2), (2,2)) = n«2, 3), (2, 2)) = n«2, 2), (4, 4))

(
(1 +z)(I-2z) (I +Z)(I-Z))

= (l-z)(I-2z)' (1-z)(I-2z) .

Remark. We do not know exactly a geometric form of "blocks" in our
2p dimensional simultaneous Pade table. Some simple examples show that



SIMULTANEOUS PADE APPROXlMANTS 73

their shape might be quite complicated, it depends on specific properties of
the functions fl (z), f2(Z), ..., fp(z) (for the special case of diagonal Mahler
indices, a block structure was investigated in [3]). In contrast, the struc
ture of a table of Hermite-Pade type I approximants was given in [2].
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